![]() |
|
Archives of the TeradataForumMessage Posted: Wed, 29 Mar 2000 @ 08:37:13 GMT
We currently have 3 transaction tables that are to be re-designed, some unused columns dropped and new columns added. I am looking for the most efficient way to design the indexes, and would appreciate any suggestions. What is the performance significance of having the primary key different to the primary index? Table definitions:
Table A - header table:
Size: 200,000,000+ records. Grows slowly. Oldest data deleted each month.
Unique column: tranid, generated internally during load process.
Other significant columns: region, store, date
Current Indexes:
(UPI) - region, store, date, tranid
(NUSI) - region, store, date
(NUSI) - region, store, tranid
(NUSI) - region, store
(NUSI) - tranid
(NUSI) - date
Users will access table using any combination of region, store, date.
Table B - detail1
Size: 2,000,000,000+ records. Oldest data deleted each month.
Unique columns: tranid & seq
Other significant columns: region, store, date
Current indexes:
(UPI) region, store, date, tranid
(NUSI) region, store, date
Users seldom access this table directly, usually from header via inner join.
Table C - detail2
Size: 220,000,000+ records. Oldest data deleted each month
Unique columns: tranid & seq
Other significant columns: region, store, date, refno (20 character
reference number)
Current indexes:
(UPI) region, store, date, tranid
(NUSI) region, store, date
(NUSI) region, store, tranid
(NUSI) region, store
(NUSI) refno
Users usually access this table via a join to header. Also accessed directly, usually by region, store and either date or refno. Tables B & C are linked via the header table only. Thanks for your time. Barbara George
| ||||||||||||||||||||||||||||||||||||||||||||||||
| | ||||||||||||||||||||||||||||||||||||||||||||||||
| ||||||||||||||||||||||||||||||||||||||||||||||||
|
| ||||||||||||||||||||||||||||||||||||||||||||||||
| Copyright 2016 - All Rights Reserved | ||||||||||||||||||||||||||||||||||||||||||||||||
| Last Modified: 15 Jun 2023 | ||||||||||||||||||||||||||||||||||||||||||||||||