![]() |
|
Archives of the TeradataForumMessage Posted: Sun, 03 Jul 2005 @ 14:26:46 GMT
<-- Anonymously Posted: Sunday, July 03, 2005 07:16 --> hi I have very big table with about 800 million rows. I want to migrate the table to PPI . I built a new table with partitions. when I am trying to move only one day ( or month) - the teradata - is using spool space for this operation. why is that? the definition of the table :
CREATE SET TABLE rtdata.J0033_FCT_PURCHASE ,NO FALLBACK ,
NO BEFORE JOURNAL,
NO AFTER JOURNAL
(
Event_Id DECIMAL(18,0) NOT NULL,
Model_Agreement_Nbr DECIMAL(18,0),
Model_Product_Id SMALLINT NOT NULL,
Card_Agreement_Nbr DECIMAL(18,0) NOT NULL,
Card_Product_Id SMALLINT,
Event_Purchase_Date DATE FORMAT 'dd/mm/yyyy',
Event_Value_Date DATE FORMAT 'dd/mm/yyyy' NOT NULL,
Number_Of_Payments SMALLINT,
Event_activity_Code CHAR(2) CHARACTER SET LATIN NOT CASESPECIFIC NOT NULL,
Party_Id DECIMAL(18,0),
Merchant_Zip_Area_Id INTEGER,
Mall_Code SMALLINT,
SIC_Source_Code SMALLINT,
Merchant_Branch_Host_Id INTEGER,
Card_Branch_Host_Id INTEGER,
Card_Holder_Id DECIMAL(18,0),
Holder_Zip_Area_Id INTEGER,
Card_Owner_Id DECIMAL(18,0),
Club_Host_Nbr INTEGER,
Sub_Club_Nbr INTEGER COMPRESS 0 ,
Discount_Club_Id DECIMAL(18,0),
Purchase_Amount DECIMAL(13,2),
Amount_Category SMALLINT,
Discount_Amount DECIMAL(11,2) COMPRESS 0.00 ,
ICF_Amount DECIMAL(11,2) COMPRESS 0.00 ,
Commision_Amount DECIMAL(11,2),
Gross_Amount_For_ICF DECIMAL(13,2) COMPRESS 0.00 ,
Event_Ind_Code CHAR(1) CHARACTER SET LATIN NOT CASESPECIFIC NOT NULL,
Purchase_Ind BYTEINT,
Model_Value_Date DATE FORMAT 'dd/mm/yyyy' NOT NULL,
Card_Value_Date DATE FORMAT 'dd/mm/yyyy' NOT NULL)
UNIQUE PRIMARY INDEX ( Event_Id )
INDEX ( Card_Agreement_Nbr )
INDEX ( Model_Agreement_Nbr )
INDEX ( Event_Value_Date )
INDEX ( Party_Id );
the definition of the new table is :
CREATE SET TABLE rtdata.J0033_FCT_PURCHASE_HIST ,NO FALLBACK ,
NO BEFORE JOURNAL,
NO AFTER JOURNAL
(
Event_Id DECIMAL(18,0) NOT NULL,
Model_Agreement_Nbr DECIMAL(18,0),
Model_Product_Id SMALLINT NOT NULL,
Card_Agreement_Nbr DECIMAL(18,0) NOT NULL,
Card_Product_Id SMALLINT,
Event_Purchase_Date DATE FORMAT 'dd/mm/yyyy',
Event_Value_Date DATE FORMAT 'dd/mm/yyyy' NOT NULL,
Number_Of_Payments SMALLINT,
Event_activity_Code CHAR(2) CHARACTER SET LATIN NOT CASESPECIFIC NOT NULL,
Party_Id DECIMAL(18,0),
Merchant_Zip_Area_Id INTEGER,
Mall_Code SMALLINT,
SIC_Source_Code SMALLINT,
Merchant_Branch_Host_Id INTEGER,
Card_Branch_Host_Id INTEGER,
Card_Holder_Id DECIMAL(18,0),
Holder_Zip_Area_Id INTEGER,
Card_Owner_Id DECIMAL(18,0),
Club_Host_Nbr INTEGER,
Sub_Club_Nbr INTEGER COMPRESS 0 ,
Discount_Club_Id DECIMAL(18,0),
Purchase_Amount DECIMAL(13,2),
Amount_Category SMALLINT,
Discount_Amount DECIMAL(11,2) COMPRESS 0.00 ,
ICF_Amount DECIMAL(11,2) COMPRESS 0.00 ,
Commision_Amount DECIMAL(11,2),
Gross_Amount_For_ICF DECIMAL(13,2) COMPRESS 0.00 ,
Event_Ind_Code CHAR(1) CHARACTER SET LATIN NOT CASESPECIFIC NOT NULL,
Purchase_Ind BYTEINT,
Model_Value_Date DATE FORMAT 'dd/mm/yyyy' NOT NULL,
Card_Value_Date DATE FORMAT 'dd/mm/yyyy' NOT NULL)
PRIMARY INDEX ( Event_Id )
PARTITION BY RANGE_N(Event_Value_Date BETWEEN
DATE '2000-01-01' AND DATE '2010-01-01' EACH INTERVAL '1' MONTH );
I use the following statement to load :
insert into rtdata.J0033_FCT_PURCHASE_hist
select * from rtdata.J0033_FCT_PURCHASE
where Event_Value_Date ='01/01/2004'
this is the explain:
the question is why the teradata system use the spool and why this step taking so much time(40 minutes)? when I run the statement -
select count(*) from rtdata.J0033_FCT_PURCHASE
where Event_Value_Date ='01/01/2004'
I get the answer immediately. the number of rows that where Event_Value_Date ='01/01/2004' = 700,000
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Copyright 2016 - All Rights Reserved | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Last Modified: 15 Jun 2023 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||