
1 pg.

A Cross Comparison of A Cross Comparison of
Data Load StrategiesData Load Strategies

Anita Richards
Teradatanew data

old data

2 pg.

Talking Points
• Data Maintenance Requirements
• Load Time Breakdown
• Transformation and Cleansing
• “Updates”: Load Utilities and SQL

• How they work
• Performance Characteristics

• including base table load and index, fallback maintenance
• Maximizing performance

• Load Strategies
• Performance Comparison of Load Techniques
• Strategies for Real-Time Availability
• Strategies for Minimal Load Times

3 pg.

Disclaimer
• Rates shown achieved on

• 2x5200 (550MHz)
• Extrapolate rates up 9% for current 5300 nodes.

• 1 WES (Ver. 3.0) Array Cabinet,
• 80 10K RPM drives, RAID1 (mirroring)
• 20 AMPs,
• Client: 4400 (450MHz),
• Client to Teradata DBMS: Dedicated 100 MB private LAN.
• Teradata V2R4.x
• Controlled Environment.
• Our SQL and Database Demographics.

Your rates will vary from our rates.

4 pg.

Data Load Requirements
• What’s the Goal?

• Real-Time Data Availability
• Minimized Delay Data Availability
• Minimized Load Times

• Archival data loading

• How does workload mix impact data load
requirements?
• Dirty Reads?
• Lock Contention?

(Delayed Availability)
Real-Time Availability Minimal Load Time

Low Update Rates High Update Rates

5 pg.

Data Elimination Requirements
• What’s the Goal?

• Minimize Data Storage
• Solution: MultiLoad Delete Task

• Minimize Query Response Times
• Archive table separate from Active table

6 pg.

Load Time Breakdown

• End-to-End Time to load includes
• Receipt of Source Data
• Transformation & Cleansing
• Acquisition
• Target Table Apply
• Fallback Processing
• Permanent Journal Processing
• Secondary Index Maintenance
• Statistics Maintenance

7 pg.

“Update” Utilities and SQL

Update
Method R

ec
ei

pt
 o

f
So

ur
ce

Tr
an

sf
or

m

A
cq

ui
si

tio
n

A
pp

ly

Fa
llb

ac
k

Pe
rm

an
en

t
Jo

ur
na

l
Se

co
nd

ar
y

In
de

x,
 e

tc
.

St
at

is
tic

s

TWB Load
(FastLoad) ☺ ☺ ☺ ☺ ☺ ☺

TWB Update
(MultiLoad) ☺ ☺ ☺ ☺ ☺ ☺
TWB Stream
(Tpump) ☺ ☺ ☺ ☺ ☺ ☺ ☺
SQL Merge Ops:
Insert-Select,
Update-Join,
Delete-Join

Use
TWB Load

to
staging table

☺ ☺ ☺ U
se

 S
ta

tis
tic

s W
iz

ar
d

Pa
rt

ne
r /

 D
B

M
S

E T L L L L L L

8 pg.

Load Utilities - FastLoad, Multiload, TPUMP
• Restrictions

• Fastload
• Inserts only
• Empty Target Table Required
• Fallback, Permanent Journal are applied after the

Fastload is complete
• Secondary Indexes, Triggers, Join Indexes and

Referential Integrity must be applied after the
Fastload is complete.

• Multiload
• Unique Secondary Indexes, Triggers, Join Indexes

and Referential Integrity must be dropped before
and recreated after the Multiload.

• TPUMP
• No Restrictions!

Best for mixed
workloads & real
time data
availability.

9 pg.

“Update” Utilities and SQL:
Restartability & Accessibility During Load

Update
Method

Checkpoint /
Restart Rollback

Permanant
Journalling

Locking &
Access

TWB Load
(FastLoad) Yes No No Exclusive

Write

TWB Update
(MultiLoad)

ACQ: per your
specification.
Apply: Every

datablock
No Yes

ACQ:
Table Access

Apply:
Table Write

TWB Stream
(Tpump) Yes Yes Yes Row hash

Write

SQL Merge Ops:
Insert-Select,
Update-Join,
Delete-Join

No Yes Yes Table
Write

Best for mixed
workloads &
real time data
availability.

10 pg.

Load Utilities - Teradata Warehouse Builder
• Seamless Integration of Extract, Transformation & Load Ops

• Parallelizes Extract, Transform and Load Acquisition Operations for
improved performance.

• Data Streams eliminate intermediate data stores.
• Data Streams are Teradata Warehouse Builder’s merge-able, split-able pipes.
• Data store limitations not an problem.

E.g: 2GB Maximum UNIX file size.
• Less work means even better performance.

• Easy Data Extraction
• Can extract from heterogeneous data sources, e.g. files, relational tables,

sources with different schema.
• Compatible with Partner Products for Complex Transformation
• Feeds the load utilities with parallelism through load operators:

• Load (aka Fastload)
• Update (aka Multiload - insert, update and delete)
• Stream (aka to TPUMP - insert, update and delete)
• Export (aka Fastexport).

11 pg.

Load Utilities - Teradata Warehouse Builder

Teradata DBMS

Extract

Transform

Load

Read
Operator
Read

Operator

User Transform
Operator

User Transform
Operator

Load
Operator
Load

Operator

Read
Operator
Read

Operator

User Transform
Operator

User Transform
Operator

Read
Operator
Read

Operator

User Transform
Operator

User Transform
Operator

Load
Operator
Load

Operator

Source Source Source

12 pg.

Teradata Warehouse Builder Acquisition Phase -
Maximizing Performance

• Use Teradata Warehouse Builder features to eliminate ETL
steps and intermediate data stores.

• Choose level of parallelism to maximize acquisition
performance:

• More parallel feeds to the point of saturating client
• Fewer parallel feeds to reduce client management overhead
• Choice of parallelism application dependent (I.e.: complexity of

read and transform operators, speed of source media.)
• Teradata Warehouse Builder eliminates the old ‘bottlenecked on

single source feed’ issue, enabling fuller utilization of Teradata
during acquisition phases.

13 pg.

Teradata Warehouse Builder Acquisition Phase -
Maximizing Performance

• Consider client processing demands & resource availability
• Client resources are shared by other tasks

• (e.g. transformation and read operators)

• Client CPU demands (most to least):
• TPUMP > MultiLoad > Fastload

• Consider concurrency effects to yield a saturated DBMS.
• 2-3 concurrent Fastloads and Multiloads will saturate the DBMS in

the apply phase.
• 1+ utility in apply phase and 1+ utility in the acquisition phase mix

well.
• If one TPUMP is not powerful enough to saturate DBMS, use

multiple TPUMPs.

14 pg.

Transformation and Cleansing
• Where to do it?

• Consider the impact on load time.
• Where is all the required data?

Move Teradata Data to Client then load to Teradata:
export-transform-load

Move Client Data to Teradata: load-transform or
load to staging-transform-load

• Teradata side advantage: Parallelism
Almost all transformations can be done with SQL/Utilities

• Guideline:
• Simple Transformations: Transformation pipe to load utility
• Complex Transformations: Transform on Teradata DBMS
• When in Doubt: Measure

• Can Transformations be eliminated?
• Evolve source feeds to a compatible format

15 pg.

Maximizing Performance:
More on Simple Transformation
• Definition of Input Data

• Avoid generated NULLIF & concatenated constructs on
.FIELD cmds

• Use SQL NULLIF and Concatenation for parallelism and reduced
client CPU usage.

• Ie: Do this transformation on the DBMS!

• Use .FILLER wisely
• Client can “block copy” input to parcels instead of “field-by-field

copy” if no .FILLER, no varchar/byte and no generated fields.
Consider bytes saved from transferring via .FILLER vs
inefficiencies of “field-by-field copy”.

16 pg.

Maximizing Performance -
More on Cleansing

• Unclean data pushes inefficiencies into the apply
phases. E.g.

• Duplicate Unique Index Values
• Duplicate Rows
• Constraint Violations

• All unclean data is put to load error tables.
• Multiload error processing is handled one row at a

time.
• Economies of scale lost

• TPUMP error processing causes rollbacks.
• Highest error processing penalty of all load methods.

• Where to clean?
• Measure to determine best option.

17 pg.

Load Utilities - FastLoad, Multiload, TPUMP
• Potential Load Rates: Fastest to Slowest

• Fastload is Fastest!

• Multiload is fast or slow, depending….
• Multiload can almost yield Fastload rates if the conditions

are right:
Higher percentage of source data to target table/partition data yields

higher load rates

• Multiload can be slower than TPump if the conditions are
wrong

• TPUMP has the slowest potential rate
• TPUMP ALWAYS processes 1 row update at a time.

18 pg.

• Acquisition Functionality:
• Receive data from host and send directly to AMPs.

• For Deletes & Updates, send only required part of the row.
• For Inserts, send the whole row.

• Redistribute & Sort data by hash.
• Performance trend is linear based on bytes to load.

• This DBMS rate assumes client and connectivity are not bottlenecks.
• Customers using big AIX, Solaris and HP-UX with single or dual GB Ethernets

seldom have such a bottleneck….

Delete/Update Estimate:
(# of rows to update/node)
(80,000 rows/sec/node)

Insert/Upsert/Mixed-Action Estimate:
(MBytes to download/node)

(2.9 MBytes/sec/node)

● Note: Delete Task has no acquisition phase.
● Increase estimated time by 1.6X if table is fallback protected.

MultiLoad Acquisition

19 pg.

• Functionality:
• Apply sorted data a block at a time into the target table.

• Performance Trend depends on number of rows/DB affected.
• Throughput increases as rows/DB increase to a peak rate.*

MultiLoad Apply Primary Table

* Processing time accumulates mostly ‘per row’ and ‘per datablock’, not ‘per byte’.
* Datablock size has some impact on throughput rates.

- Larger datablocks greatly improve the total response time of an update, but not fully by the corresponding increase in hits/datablock it results in. ‘Per
datablock’ processing time is larger with larger datablocks than it is with smaller datablocks.

Determining number of rows/DB affected (X):
• X = P * N

• % of target table affected: P = (rows to MultiLoad)
(target table rows)

• Total rows/DB: N = TRUNCATE(S / rowsize), where
Typical DB size (S) is 75% of maximum DB size.

• e.g.. If Max DB size is 63.5K, typical is 63.5K*.75=48K

• Example:
• 100 rows fit into a datablock (N).
• We are adding 10% more data to the table. (P)
• We are therefore adding 10% more data to all datablocks.

i.e..: X = P * N = .10 * 100 = 10 rows/DB affected

Apply Time =
(Rows to load/node)
(Y rows/sec/node)

See next slide
for ‘Y’

20 pg.

0
5000

10000
15000
20000
25000
30000
35000
40000
45000
50000

0 25 50 75 10
0

12
5

15
0

17
5

20
0

22
5

25
0

Rows/DB affected

R
ow

s/
N

od
e/

S
e

Delete Update Insert Del Task

FastLoad
Rate

TPump
Rate

MultiLoad Apply Primary Table

Apply Time = (Rows to load/node)
(rows/sec/node rate for your hits/db)

21 pg.

• What about Upsert Performance?
• Per datablock, MultiLoad first tries to update the row. If that

fails, it re-issues the command within the DBMS as an Insert.
(The datablock is still only committed once.)

• Example for estimating Upsert apply time:
• Upsert of 100,000 rows will result in 50% Inserts, 50% Updates.
• Apply time ~= time to do 100,000 updates PLUS time to do 50,000

inserts.
Use the insert and update rates at the hits/db you get with the original 100,000

rows. (not 150,000 or 50,000 rows.)

MultiLoad Apply Primary Table

22 pg.

• All data shown thus far assumes prime index is UPI.
• MultiLoad with highly non-unique NUPI can reduce performance.

• Multiset reduces this difference to insignificant by eliminating duplicate
row checking.

• NUPI MultiLoad (w/ or wo/ Multiset) with few (100 or less) rows/value
performs like UPI MultiLoad.

• But if NUPI improves locality of reference, NUPI MultiLoad can be
faster than UPI MultiLoad!

• Lumpy NUPI Inserts can be orders of magnitude faster than UPI Inserts
• But... Performance rates at X

hits/DB as a result of lumpiness
do NOT approach performance
rates at same X hits/DB when
evenly distributed.

MultiLoad on NUPI Tables / Lumpy Inserts

0
5000

10000
15000
20000
25000
30000
35000
40000

0 50 10
0

15
0

20
0

25
0

30
0

35
0

40
0

45
0

50
0

Rows/DB affected

R
ow

s/
N

od
e/

Se
c

Insert Lumpy Insert

23 pg.

• All data shown thus far assumes non PPI Tables.
• MultiLoad to a PPI table can greatly improve locality of

reference.
• Unlike lumpy NUSI data, performance of this type of locality of

reference yields SAME performance benefit as non partitioned /
high hits/db situation.

• Consider instead: What’s the hits/db in the target PARTITION?
• Apply estimated time according to this hits/db.

MultiLoad on PPI Tables

24 pg.

• Fallback: Double estimated times to load both primary and NUSI
tables if fallback.

• Permanent Journal: Additional time required to maintain.
• Functionality of NUSI maintenance:

• Generate NUSI change rows while applying primary table rows
• Sort NUSI change rows
• Apply NUSI change rows to NUSI tables

1.13

0.97
0.9

1.21
1.06

0.95

0.32
0.22

0.16

0 .1

0 25 50 75 100 125 150 175 200
Rows/value (uniqueness rate)

el
ap

se
d

tim
e

Primary Table Time (1X)
Additional NUSI Delete Time

Additional NUSI Insert Time

Additional NUSI Delete Task Time

MultiLoad Apply NUSI, Fallback, Journal

25 pg.

MultiLoad - Maximizing Performance
• Go for the highest hits per datablock ratio

• Do one, not multiple MultiLoads to a single table
• Do less frequent MultiLoads
• Load to smaller target tables, or to PPI partitions

• active vs archive table partitions

• Reduce your rowsize
• Multi-Value Compression

• Use large datablock sizes

Balance your choices against real-time availability
goals and impacts on DSS work.

26 pg.

• DBMS Functionality: Primary Index Access for Inserts,
Updates, Deletes on tables as issued from TPump or other
applications.

5200 (550MHz) Rates (64K DBs)

0
50

100
150
200
250
300
350
400
450

0 25 50 75 100 125 150 175 200

Tasks/Node

U
pd

at
es

/S
ec

/N
od

e

Insert

Update

Delete

Upsert 0%
Insert
Upsert
100% Insert
CPU %

Performance Trend
Tasks = stmts/request * sessions

• Around 20 tasks/node
diminishing returns set in.

• After ~30-40 tasks/node,
no further gain.

Load Utilities: TPUMP UPI Updates
Trend (DBMS Capability)

27 pg.

• NUPI cost is minimal.
• 10% reduced performance at 1000 rows/NUPI vs 1 row/NUPI.

5200 (550MHz) Rates (64K DBs)

0
50

100
150
200
250
300
350
400
450
500

0

10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

10
00

Rows per NUPI

In
se

rt
s/

Se
c/

N
od

e

Insert

Load Utilities: TPUMP NUPI Updates
Trend (DBMS Capability)

28 pg.

• Fallback: Reduce throughput by
2X.

• e.g.: 100 txns/sec No Fallback ->
50 txns/sec w/Fallback

• Local Journalling (Before, Local
After): Reduce throughput by
1.2X.

• e.g.: 100 txns/sec No Journalling ->
83 txns/sec w/Local Journal.

• After Journalling: Reduce
throughput by 1.75X.

• e.g.: 100 txns/sec No Journalling ->
57 txns/sec w/Local Journal.

0 40 80 120 160 200 240

sessions/node
tx

ns
/s

ec
/n

od
e

No FB, No Jrnl
Local Jrnl

Fallback
After Jrnl

Load Utilities: TPUMP Updates
Fallback and Permanent Journal Costs

29 pg.

• Join Indexes, triggers, referential integrity,etc. also must be maintained….
These SI maintenance costs assume index value not updated.

0 40 80 120 160 200 240

sessions/node

tx
ns

/s
ec

/n
od

e

No Indexes

w/ NUSI-1

w/ USI

est w/ 5 NUSIs

USI Cost
Change row sent to owning AMP.
Additional CPU/USI is 1.0X the CPU path of

primary table insert/delete.
E.g: If it takes 100 seconds for the primary

inserts/deletes, it will take an additional 100
seconds to update each USI.

NUSI w/ 1 row/value Cost
NUSI change row applied locally.
Additional CPU/NUSI is 0.55X the CPU path of

primary table insert/delete.
E.g: If it takes 100 seconds for the primary

inserts/deletes, it will take an additional 55
seconds to update each NUSI.

NUSI w/ x rows/value Cost expected to be like NUSI
w/1 row/value Cost.

Load Utilities: TPUMP Updates
Cost of Index Maintenance

30 pg.

TPump - Maximizing Performance
• Key to achieving maximum performance is achieving

30+ concurrent tasks/node from the data feed.
• Potential Issues achieving enough tasks/node:

• Reading Source Media
• Client processing CPU and availability
• Connectivity configuration
• Sessions
• Pack
• Errors
• “Serialize ON”

31 pg.

TPump - Client Processing
• Client CPU is required for the stream load operator plus

transformation and read operators.
• 1 Client node running stream load operator only can supply about

100 Teradata Nodes to saturation.
• Assumes PK Updates with no fallback, no indexes, no journal. If indexes, fallback

or journal, 1 client node can supply >100 Teradata Nodes.
• If one Client node is not powerful enough, consider using more.

• Partition input data
to avoid inter-job
row-hash collisions.

A 4-way node
can deliver 4x

these rates
w/TWB!

Rows per Client CPUSecond (Stream Operator only)

0

10000

20000

30000

40000

50000

60000

70000

0 10 20 30 40 50 60 70 80 90
pack

ro
w

s/
C

PU
Se

c

How much Client
CPU do I need to
drive my desired
TPUMP rate?

32 pg.

TPump - Maximizing Performance
• TPump Parameters to maximize feed rates: Sessions

• Increase sessions per AMP to saturate client or DBMS
• Alternatively, increase sessions only to accommodate the

maximum load rate desired.
Sessions, rate and PSF can all be used to limit feed rates.
PSF is the only way to guarantee a rate.

• Watch Out! Too many sessions costs
• Management overhead on client
• May result in DBMS message congestion
• May result in row hash lock deadlocks if no serialize.
• Try 1 or fewer sessions per AMP.

5200/550MHz TPump: Sessions Impact
(Note 5250 is 25% faster.)

0
100
200
300
400
500

0 10 20 30 40 50
Sessions/Node

Tx
ns

/s
ec

/n
od

e

5200/450MHz TPump Client:
Sessions Impact

0

0.02

0.04

0.06

0.08

0 20 40 60 80 100
Sessions/TPumpClient

C
lie

nt
 C

PU
/tx

n

UPI Upsert, 0% Inserts
UPI Upsert, 100% Inserts
NUPI Insert

33 pg.

TPump - Maximizing Performance
• TPump Parameters to maximize feed rates: Pack Rate

• How many transactions can you fit in a buffer?
• 2548 Maximum Using Fields (txns * columns) z higher limit at V2R5

Most likely limit to hit first

• Maximum Pack is 600. z higher limit at V2R5
• Maximum 1M Buffer holds z higher limit at V2R5

Request Parcel
Data Parcel (Max 65104 bytes less Request Parcel Size)

• Only issue if data size is larger than 600 bytes/transaction)
Response Parcel

• TPUMP will discover your max pack rate for you.
But only let it do this the first time --- discovery is expensive on client CPU!

Syntax example (2 columns, 2 txns packed)
.LAYOUT lay1a;
.FIELD CUSTOMER_ID * INTEGER;
.FIELD CUSTOMER_NAME * CHAR(40);

.DML
INSERT INTO TABLEX (customer_id, customer_name) values
(:customer_id,:customer_name);
TPump Generates a macro: databasename.M20000802_173302_30_01_0001.
Request becomes

Using (AA1 int,AA2 char(40),AB1 int,AB2 char(40))
BT;
exec databasename.M20000802_173302_30_01_0001(:AA1,:AA2);
exec databasename.M20000802_173302_30_01_0001(:AB1,:AB2);

34 pg.

TPump - Maximizing Performance
• TPump Parameters to maximize feed rates: Pack Rate

• Use highest pack rate possible for your transaction.
• Higher pack reduces client CPU demand in addition to

increasing TPump rate.
• Is number of columns per row preventing high pack? Try this trick:

Combine several character fields into a single field then use substr in the SQL...

• But, higher pack aggravates error processing and partial buffer
overhead...

5200/550MHz TPump: Pack Level Impact
(Note 5250 is 25% faster.)

0

100

200

300

400

0 10 20 30 40
Pack Level

Tx
ns

/s
ec

/n
od

e

5200/450MHz Client TPump:
Pack Level Impact

0

0.02

0.04

0.06

0.08

0 10 20 30 40
Pack Level

C
lie

nt
 C

PU
/tx

n

UPI Upsert, 0% Inserts
UPI Upsert, 100% Inserts
NUPI Insert

35 pg.

TPump - Maximizing Performance
• TPump Parameters to maximize feed rates:

• Minimize Error Processing and Row Hash Deadlocks
• Some causes of Error Processing

Duplicate Unique Index Values
Duplicate Rows
Constraint Violations

• What happens:
Additional DBMS work and client-to-DBMS traffic to rollback, resolve, re-send and

reprocess all transactions in the buffer.

• Cleanse Input data as much as possible before giving it to TPump
Error Processing example (6 txns packed, error on 3rd, 6th txn)

Request sent is Insert1/Insert2/Insert3/Insert4/Insert5/Insert6
DBS applies Insert1/Insert2, gets error on 3rd transaction.
DBS rolls back Insert1/Insert2, sends request back to TPump client.
Client re-sends request as Insert1/Insert2/Insert4/Insert5/Insert6
DBS applies Insert1/Insert2/Insert4/Insert5, gets error on 6th txn.
DBS rolls back Insert1/Insert2/Insert4/Insert5, sends request back to TPump client.
Client re-sends request as Insert1/Insert2/Insert4/Insert5
DBS applies Insert1/Insert2/Insert4/Insert5. Request Completed.
Client sends request & DBS applies ErrTab-Insert3
Client sends request & DBS applies ErrTab-Insert6

Work for
6 True Inserts:

Total Inserts: 12
Total Inserts rolled back: 6
Total requests sent: 5

36 pg.

TPump - Maximizing Performance

• TPump Parameters to maximize feed rates:
• SERIALIZE

• Guarantees all input records for a given row will be processed
on the same session, in input record order.

Positive Side-effect: Minimizes Row Hash Lock Collisions/Deadlocks.

Input Stream
A 24
B 13
C 6
D 33
C 4
D 8

Session 1
A 24
C 6
C 4

Session 2
B 13
D 33
D 8

Only use SERIALIZE ON if conditions dictate...
When multiple input records might touch the same row AND the order of
application is important.
To minimize row hash lock delays when there are non-trivial row hash synonyms

If using SERIALIZE ON use “-f 10” to keep clumpy NUPI data moving.

Cost:
Client CPU Overhead
More “partial buffers” for UPSERTs touching
same row.

Reduction of average pack rate
Potential session skewing

Have well distributed PI’s.
Don’t pre-sort the source data

37 pg.

TPump - Maximizing Performance
• TPump Parameters to maximize feed rates:

Partition Sessions by DML
• Without this partitioning, pack factor is determined by the lowest

common denominator.
• ie: DML with the most columns causes all DMLs to work with a smaller

pack factor
• With partitioning, sessions supporting one DML may have a higher

pack factor than a session supporting a different DML to achieve
more optimal performance.

• Partitioning also improves statement cache hit rates. (Statement
cache is per session.)

• Partitioning allows you to specify the number of sessions per DML.

New at V2R5 / TUF7.0

38 pg.

Load Techniques: Combining Fastload with SQL

• Basic Loading:
• FastLoad to staging table Insert-Select from staging table to target
• FastLoad to staging table Update-Join from staging table to target

• Getting the data together for transformations:
• FastLoad Transform/Cleanse Insert-Select

• Data Elimination:
• Fastload Delete-Join
• Delete from tableX where condition;

• (Just SQL: No Fastload or query from staging table required.)

39 pg.

• Acquisition Functionality:
• Receive data from client, redistribute to correct AMP.
• Stores data into multiple 508K buffers. (8 * 63.5K)
• Sorts each buffer individually.

• Performance trend is linear based on bytes to load.
• This DBMS rate assumes client and connectivity are not

bottlenecks.
• Customers using big AIX, Solaris and HP-UX with single or dual GB Ethernets

seldom have such a bottleneck….

FastLoad Acquisition

Acquisition Time = (Mbytes to load/node)
(5 Mbytes/sec/node)

40 pg.

…..…

Merge
Level 1

Merge
Level 2

…..……..… …..….…..……..……..…

• Apply Functionality:
• Each AMP performs 8-way merge-sorts on its buffers.
• Writes the sorted data to disk.

• Performance trend dependent on number of 8-way
merge-sorts that must be performed.

• Our Merge-level is 3.25
• Determining your merge-sort level

• Merge-level = log8(Kbytes/AMP / 508KBytes)

Apply Time =
(Mbytes to load/node) * Your Merge Level
(7.5 Mbytes/sec/node) 3.25

FastLoad Apply

41 pg.

-

26
6,

33
8,

30
4

53
2,

67
6,

60
8

79
9,

01
4,

91
2

1,
06

5,
35

3,
21

6

1,
33

1,
69

1,
52

0

1,
59

8,
02

9,
82

4

1,
86

4,
36

8,
12

8

2,
13

0,
70

6,
43

2

2,
39

7,
04

4,
73

6

2,
66

3,
38

3,
04

0

2,
92

9,
72

1,
34

4

Bytes to Load per AMP

M
B

yt
es

/S
ec

/N
od

e
5 Merge Levels

3
Merge
Levels

4 Merge Levels

1-2
Merge
Levels

100 & 500 byte row

33
,2

92
,2

88

4,
16

1,
53

6

Throughput reduced by (4-3)/3= 33%
compared to 3 merge levels

Throughput reduced by
(5-4)/4= 25% compared to 4
merge levels

Tput reduced by
(3-2)/2=50%
compared to 2
merge levels

450,000,000 bytes/amp >>
3.25 Merge Levels >>
7.5MB/sec/node

FastLoad Apply - Merge Level Effects

42 pg.

• Primary table modifications done block at a time.
• Performance trend depends on number of rows/DB affected.

• Tput increases as rows/db increase to a peak rate.*

INSERT into tablexxx SELECT * FROM table2xxx
WHERE <some rows qualify and PI of both tables is same, (no redistribution)>;

Complex Full File Updates - Apply

* Processing time accumulates mostly ‘per row’ and ‘per datablock’, not ‘per byte’.
* Datablock size has some impact on throughput rates.

- Larger datablocks greatly improve the total response time of an update, but not fully by the corresponding increase in hits/datablock it results in. ‘Per
datablock’ processing time is larger with larger datablocks than it is with smaller datablocks.

Apply Time = Query time + (Rows to update/node)
(rows/sec/node rate for your hits/db)

Insert-Select to Existing Table Trend

0

5000

10000

15000

20000

25000

0 50 100 150 200
hits/db

ro
w

s/
se

c/
no

de Multiply
Time by 2.4x
if fallback.

43 pg.

• For Full File Updates: Usually No Index Management required.
• Full File Inserts and Deletes: Secondary Index modifications

done row-at-a-time.
• Its better to drop and recreate the index unless the number of rows to

update are very small, ie:
<= 0.1% of the table’s rows being updated

For each SI: SI_time =
(# of rows to update/node)

(rows/sec/node rate)

Insert-Select to Existing Table:
Index Maintenance Rates

0
500

1000
1500
2000
2500
3000
3500
4000
4500

1 10 100 1000 10000
rows per value (logarithmic scale)

SI
 u

pd
at

es
/s

ec
/n

od
e NUSI

USI

Complex Full File Updates - Indexes

Multiply
Time by 2.4x
if fallback.

44 pg.

MultiLoad, Tpump, Complex Updates -
Maximizing Performance of Index Maintenance
• Do you really get value from that Secondary Index?

• Unless value uniqueness is enough so that queries will choose the
index to access the table, don’t create the index.

• Will the number of rows qualifying from “Where index = value” result in
fewer datablocks being accessed than there are datablocks in the
primary table?

• Index Wizard will tell you if your Secondary Index will be used.

• Consider Sparse JI
• Maintenance only required for a small percentage of the rows
• Remember, Sparse JI’s must be dropped and recreated if you utilize

Multiload.
• Consider drop and recreate secondary indexes

• Generally only an option for very infrequent Multiloads or somewhat
infrequent Complex Updates

45 pg.

• Create Fallback:
• Redistribute rows to fallback AMP and generate fallback table.

• Create USI
• Primary Copy only -- double time if fallback.

• Create NUSI
• Primary Copy only --

double time for fallback.

Create Fallback Time = (Mbytes to load/node)
(12 Mbytes/sec/node)

Create Fallback & Indexes

Create USI Time = (Mbytes to load/node)
(17 Mbytes/sec/node)

Create NUSI Time =
(Mbytes to load/node)
(X Mbytes/sec/node)

Create NUSI rates - 'X '

15
17
19
21
23
25
27
29

0

20
0

40
0

60
0

80
0

10
00

12
00

14
00

16
00

18
00

20
00

rows per value

m
b/

se
c/

no
de

46 pg.

A Cross Comparison of Data Load Strategies
• Real-Time vs Near Real-Time vs Delayed Availability

• TPump: Just trickle them in as you get them.
• Frequent Batch Fastload/Insert-Select or Multiload every few minutes.

• With and without PPI.
• Multiload or Fastload/Insert-Select on daily or weekly intervals

• Scenario:
• 3 years x 5 mil rows a day, 100 byte rows
• No Secondary Indexes
• No Fallback, No Permanent Journal
• No Transformation / Cleansing
• No Client / Connectivity Bottlenecks

At varying load frequencies, how does performance of
TPUMP vs Multiload vs Fastload / Insert-Select

compare?

47 pg.

Much Delayed Availability
➀ MultiLoad-

Partitions

Comparison of Load Strategies, Varying Load Frequencies -
No Indexes

0.00%
2.00%
4.00%
6.00%
8.00%

10.00%
12.00%
14.00%
16.00%
18.00%
20.00%
22.00%
24.00%

0 20 40 60 80 100
Load every x days

%
 o

f d
ai

ly
 re

so
ur

ce
s

re
qu

ire
d

Multiload
TPUMP
Multiload Monthly Partitions
FLD/Ins-Sel
FLD/Ins-Sel Monthly Partitions

➄ TPump➁ FastLoad / Ins-Sel -
Partitions

➂ MultiLoad ➃ FastLoad / Ins-Sel

48 pg.

Delayed Availability
➀ FastLoad / Ins-Sel

- Partitions
➂ TPump➁ Multiload -

Partitions
➃ MultiLoad ➄ FastLoad / Ins-Sel

Comparison of Load Strategies, Varying Load Frequencies -
No Indexes

0.00%
2.00%
4.00%
6.00%
8.00%

10.00%
12.00%
14.00%
16.00%
18.00%
20.00%
22.00%
24.00%

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Load every x hours

%
 o

f d
ai

ly
 re

so
ur

ce
s

re
qu

ire
d

Multiload
TPUMP
Multiload Monthly Partitions
FLD/Ins-Sel
FLD/Ins-Sel Monthly Partitions

49 pg.

Real-Time and Near Real-Time Availability
➁ FastLoad / Ins-Sel

- Partitions
➀ TPump ➂ Multiload -

Partitions
➃ MultiLoad ➄ FastLoad / Ins-Sel

Comparison of Load Strategies, Varying Load Frequencies -
No Indexes

0.00%
2.00%
4.00%
6.00%
8.00%

10.00%
12.00%
14.00%
16.00%
18.00%
20.00%
22.00%
24.00%

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60

Load every x minutes

%
 o

f d
ai

ly
 re

so
ur

ce
s

re
qu

ire
d

Multiload
TPUMP
Multiload Monthly Partitions
FLD/Ins-Sel
FLD/Ins-Sel Monthly Partitions

Q&A

