

Improve your OLAP Environment
with Hyperion and Teradata

Rupal Shah

Teradata Corporation

November 2004

Scope
This paper describes how you can use Hyperion and Teradata technologies to
improve your analytical OLAP application environment, specifically around Hybrid
(HOLAP) and Relational (ROLAP) type solutions. This paper is targeted to BI
administrators, system integrators and database developers. Readers are expected
to have a basic understanding of the features of the Teradata Database Aggregate
Join Index and Hyperion Essbase and Integration Services products.

Table of Contents

Scope ..1

Introduction..3

Business Case ...3

Challenges .. 3
Solution.. 4

Intentions ...5

Better build time .. 5
Better relational OLAP response ... 5

Environment Considerations ...6
OLAP Design.. 6
Data Warehouse Refresh ... 6
Proposed Aggregate Join Index .. 6
Physical Database Design .. 6
Semantic Layer / View Methodology.. 7

Better Build Time using AJI...7
EIS OLAP Model ... 7
EIS Metaoutline ... 8
Aggregate Join Indexing Strategy. .. 9
Create the AJI ... 11
Check EIS dataload query against an AJI ... 11

Better relational OLAP response using AJI..13
Summary...14

Conclusions ... 14
Benefits .. 14
Disadvantages ... 14

Next Steps...15
Secondary Indexes... 15
Partitioned Primary Index.. 15

Introduction
Hyperion and Teradata understand the challenges facing customers today in
delivering and accessing important analytic solutions to their end users with access
to detail data. These challenges can range from maintenance and deployment to
performance and availability associated with an analytic OLAP application. This paper
is really for those folks interested in moving from a MOLAP environment to a
HOLAP/ROLAP type solution which can address some of the current challenges when
trying to access current or deeper analytics without being overly penalized in
performance. However, knowing that ‘cut-point’, will be imperative to deliver the
best analytical OLAP environment to your end-users. We are not making any claims
that the techniques identified in this paper will produce ‘exact’ performance
characteristics as in a MOLAP solution, but rather an approach to provide
HOLAP/ROLAP type solutions with ‘better’ and sometimes ‘close too’ performance one
would experience with a MOLAP solution, with the benefits of addressing some of
your current challenges.

Business Case
At a high-level, the business case example below will identify some of these
challenges in delivering your current and/or deeper analytics and the proposed
solution to meet those challenges.

Challenges
Though, these challenges are broad in nature, they are applicable on any OLAP
implementation as your environment matures over time.

• Deeper Analytics – Providing deeper analytics in a MOLAP design, generally

means building larger and possibly more cubes to support such a request. This
still is without assurance, based on data volumes, whether or not users will be
able to access down to SKU and Account type levels. Question: Will my hardware
support larger and more cubes?

• Cube Build Times – With deeper MOLAP analytics comes longer and more cube

builds within the given batch window to perform this task. Question: Will my
cube(s) build(s) finish in my batch window? What about reducing my current
build times?

• Cube Maintenance – More cubes more maintenance, larger cube more

hardware resources. Question: How can I reduce my cube maintenance?

• Network Saturation with Data Transfer – Unless your environment is on a

private/dedicated network and/or cubes built during off-peak hours, data transfer
will impact LAN access. Question: How can I reduce network saturation?

• Analytic Application to reflect more ‘real-time’ data – With longer cube

builds to meet deeper MOLAP analytics comes less frequent updates to your
analytics. Question: How current is your analytics? Do you want more ‘real-time’
analytics?

Solution
To meet the above challenges our customer is interested in implementing a new
solution with more direct Teradata access to detail data in the warehouse. The
solution approach is as follows:

• HOLAP/ROLAP type solution – Customer is interested in extending their

analytics with a relational solution to reduce cube build times, reduce cube
maintenance, reduce network saturation data transfers and get to ‘real-time’
detail data in the warehouse.

• Essbase OLAP Environment – Customer wants to use their current investment

in what they have designed in Essbase. Hence, theoretically no change in current
Essbase environment, just what and where the analysis is being done. Any
additional work would be in the form of extending their current OLAP model and
metaoutline to meet their deeper analytic request. We will assume for this paper
readers are familiar with Hyperion products.

• Teradata Database Feature – Customer is aware with this approach there is a

performance penalty to access those relational OLAP levels. Hence, to assist in
attaining ‘better’ performance in this area we will use a Teradata Database
feature called Aggregate Join Index (AJI). The simple definition is, an AJI is
nothing more than aggregated result set saved as an object in the database. It is
transparent to an end-user and BI Administrators and will be used automatically
by the Teradata optimizer when a query plan contains frequently made like
columns and aggregates. We will assume for this paper readers are familiar with
this feature. For more information, refer to the Teradata Database SQL Reference
– Data Definition Statements.

Note: This paper will not focus on any size or hardware configurations with the
Teradata Database or Hyperion products. Since, this will vary from customer to
customer and the intention here is for the reader to walk away with an approach to
‘better’ their OLAP environment.

Intentions
To some degree changing just your OLAP design to HOLAP/ROLAP by itself (i.e.
without any further Teradata work) will address the reduction of cube maintenance,
long build times and network saturation by default. Though, you could stop at this
point, two challenges still require your attention to improve your OLAP environment.
The first, “better build time” when building Essbase OLAP part/content (i.e. Hyperion
Essbase requires top/first-level of analytics to exist in Essbase). And second, “better
Hybrid OLAP response” when accessing and navigating your Hybrid OLAP content
when it resides in the relational database. Hence, the idea here is to incorporate the
Teradata Database AJI feature to improve these two specific areas of your OLAP
environment.

Better build time
When building any OLAP content there are 3 component measurements to take into
consideration when talking about “Total Build Time”. They are: Query, Data
Transport and Cube ‘build’ times, which will all differ greatly depending on the OLAP
design (i.e. MOLAP, HOLAP and ROLAP).

• Query Time – The time it takes for query, in this case the dataload query, to

complete on the database.

• Data Transport Time – The time it take to transport the data after the dataload

query has completed and populated the Essbase part of the cube/OLAP content.

• Essbase/Cube ‘build’ time – The time it takes to construct the Essbase part of

the cube/OLAP content from the data it received and perform whatever additional
rollup calculations required to accurately display the defined the top-level OLAP
content.

This paper will only focus on improving the first bullet “Query Time” with the
Teradata Database AJI feature. To improve second and third bullet items, refer to
your network administrator and Essbase documentation for more information and
parameter tuning.

Better relational OLAP response

There are 3 types of OLAP analysis environments available to Essbase Analytic
Services. They are MOLAP, HOLAP and ROLAP type environments.

• MOLAP – refers to all dimensions and levels of your analysis in the Essbase

cube.

• HOLAP – refers to some dimensions and levels of your analysis in the Essbase

cube and in the rest in the relational database

• ROLAP type – traditional ROLAP refers to all of your analysis is in the database.

However, at this time, Essbase requires at least the top/first-level to reside in
Essbase. Hence, we’ll call it ROLAP type for a lack of a better term. Though, one
could argue this could also be called HOLAP.

Though, this paper we will focus on the third bullet. The principles and the Teradata
Database feature example described in this document can apply to any OLAP design
that falls between second and third bullets.

Basically, we are going to use an OLAP design that reflects all dimensions and levels
are in the database, except for the very top-level of each dimension which will reside
in Essbase. Since this is a requirement at this time for Essbase. Hence, it requires
some data loading. We will show how using Teradata AJI feature will improve build
and relational analysis access times. Though the Teradata Database AJI feature will
require DBA involvement, the result AJI object is transparent to an end-user and BI
Admin. The Teradata optimizer will determine automatically during its query plan
whether or not to use this object. Hence, there is no need to rewrite or recreate your
OLAP designs or database access to take advantage of this Teradata Database
feature. Which we stated earlier, “theoretically, no change in current Essbase
environment, just what and where the analysis is being done.”

Environment Considerations
For the purposes this paper and the examples used, the following environment
considerations are disclosed and defined here:

OLAP Design
In our case example, we have an Essbase OLAP model that we are interested in
addressing the points made in the previous sections. We are interested in shorter
cube build time, deeper analysis, less cube maintenance and closer to ‘real-time’
data in our data warehouse, which can be difficult to achieve in our existing MOLAP
model and will exceed our batch ‘operational’ window timeframe for this type of
deliverable analytic. Hence, we will consider a HOLAP/ROLAP type approach to
delivering this analytic environment. The Essbase Integration Service OLAP
metaoutline will be defined as having all dimensions and levels are in the database,
except the first or top-level which will be in Essbase.

Data Warehouse Refresh
Since defining and building an AJI will against base tables will introduce concerns
regarding the accuracy of the data being analyzed. We are going to assume the cube
part build and AJI creation occurs in a window where the data warehouse is not
being updated and is considered current. Though, regardless if you take this
approach or not, DBA and BI administrators would always need to re-executed their
build whenever the data warehouse has been refreshed.

Proposed Aggregate Join Index
Though there are many combinations one can come up with in regards to what type
of AJI should be created. We are proposing in this paper, to create a broad AJI that
references all dimensions and levels except the very lowest level. Since, creating an
AJI at the lowest level would result in size, time to build and access, no different
then different than going against the base transaction tables directly. And the intent
here is to provide an AJI with levels of aggregation for those levels of analysis ‘most
used’ in the OLAP environment.

Physical Database Design
Physical database design of any Enterprise Data Warehouse by definition should
reflect the customers business independent of any tools requirement or approach to
delivering BI content. The Teradata EDW should be designed to adhere to the

practices and methodologies to best support a enterprise data warehousing
environment. Hence, it will be assumed in this document that this Teradata EDW
foundation exists. Meaning, the physical design, whatever it may be, should be
agnostic to any tool, and should be ultimately driven by to the customer’s business
requirements.

In this paper the physical database design is a snowflake. Not to say the information
within this paper could not apply to any other physical designs.

Semantic Layer / View Methodology
Independent of the physical database design mentioned above, the recommended
method to access relational content is to create a view/semantic layer (i.e.
database/user). The database/user should contain appropriate objects/views pointing
to base/production tables that are required to support the customers
reporting/analytic requirements and any tool dependencies to delivery BI content.
This approach fits in well with Essbase Integration Services approach to designing
OLAP models, which is based on a ‘logical’ star and/or snowflake approach. Not to
mention, creating a view layer for users/BI administrators, is generally considered
‘good practice’ in a Teradata environment. A DBA should work closely with the BI
Administrator in determining the appropriate views required to meet the analytic
reporting needs.

Note: In this paper the EIS logical OLAP model design is a snowflake and there is a
one to one view definition to the base tables.

Better Build Time using AJI
To illustrate the first point above, this section will describe our example EIS OLAP
model, steps for using EIS to help create an AJI for our case example and
demonstrate its effectiveness for “Better Build Time” using Hyperion Essbase
Integration Services product.

EIS OLAP Model – Figure 1, shows Fact object with (6) dimensions and (1) account
measure defined for this OLAP Model.

(Figure 1)

EIS Metaoutline – Figure 2, shows our current MOLAP Metaoutline and Figure 2.1
shows our ‘new’ Hybrid HOLAP/ROLAP type model design for our new solution
approach. We are assuming readers are familiar with Hyperion products and know
how to set dimension levels for relational/hybrid access, which are identified with
grey icons and the top-level in Essbase in blue icons.

Note, we are only populating the very top/first-level in Essbase.

 (Figure 2)

 (Figure 2.1)

At this point you can execute this build, without implementing our proposed solution
with Teradata AJI feature. This build will execute 2 types of queries against the
database. First, a set of structural queries to build your dimension and level member
labels for Essbase. The second query is your (1) dataload query to bring data into
the lowest level in the Essbase cube/part of the OLAP design, which in this case is
the top-level only.

What this paper is proposing is the ‘broad’ AJI we are suggesting will benefit both
and will improve those relational levels and your Essbase cube/part build as well.

Aggregate Join Indexing Strategy – As we mentioned earlier, there are many
combinations in regards to what type of AJI should be created. What we are
proposing, as mentioned earlier in this paper, is to create an AJI that references all
dimensions and levels except the very lowest level. See Figure A below, area in
Yellow represents the ‘broad’ AJI that we will create in Teradata that will contain
aggregates on all levels and all columns and measures defined for this model. Why,
because this is where we feel end-user will spend most of their analysis time and will
require better response from Hybrid OLAP type requests. Note this is not the only
type of AJI one can create. More experience and better understanding of your end-
user requests to the database will determine the types of AJI that can be created to
improve beyond this initial suggested approach (i.e. an AJI on a specific dimension or
AJI at each relational level). Since we don’t have any specific requirement regarding
what dimensions and levels are most used at this time. We are proposing (1) ‘broad’
AJI as a start, to improve end-user response to relational access and to minimize
DBA maintenance. Since, there will be DBA maintenance required to support an AJI
when refreshing the warehouse. In addition, the AJI we will create will also help build
our required top-level BI content in the Essbase cube because the query that will
build this top-level will be a subset of the AJI we create. Hence, the optimizer will the
AJI rather than accessing the base tables, which will result in a faster query response
and will satisfy our first objective of “better build time” of your Essbase OLAP
environment.

Time

Products Brands Business

Channel

Org

Year

Product

Category

Brand

Category

Business

Type Channel
Type

Business

Unit

Quarter

Product

Brand

Division

Month Area

Day

Sales

Center

Level in
Essbase BBrrooaadd

AAJJII iinn
TTeerraaddaattaa

Teradata

Dimension Line

(Figure A)

sing EIS Metaoutline to help define an AJI – Tip, since an AJI is nothing more

 SQL

U
than an aggregated SELECT statement wrapped in CREATE JOIN INDEX syntax
where the result set is saved in the database. We can use EIS to generate the
SELECT statement via OLAP Metaoutline interface. This is done when we tag all
levels except the lowest (see Figure 3) and view and copy the SQL from the Edit
dialog box (see Figure 4). Then wrap the CREATE JOIN INDEX and PRIMARY INDEX
syntax (see Figure 5) and execute the DML statement via Queryman or Winddi.

(Figure 3)

 (Figure 4)

Create the AJI – Creation time for an AJI will depend on size of the tables and
system usage.

Note: AJI definition (SQL) syntax can not be agasint view objects, only against actual
tables. Though, to keep things organized and within this analytic’s semantic layer.
We are creating this AJI in the semantic layer (view database) Example_v.

CREATE JOIN INDEX Example_v.AJI_Example ,NO FALLBACK ,CHECKSUM = DEFAULT AS
SELECT COUNT(*)(FLOAT, NAMED CountStar), aa.Product_Category, ab.Brand_Category,
af.Business, ag.Channel, ah.Area, al.Division, ak.Business_Unit, aj.Year, aj.Quarter, aj.Month,
SUM(ad.Sales) (FLOAT, NAMED NDN_CASES)
FROM Example.Product_Category aa, Example.Brand_Category ab, Example.Brand ac, Example.FACT
ad, Example.Product ae, Example.Business af, Example.Channel ag, Example.Area ah,
Example.Sale_Center ai, Example.Time aj, Example.Business_Unit ak, Example.Division al
WHERE ac.Brand_Category_Id = ab.Brand_Category_Id
 AND ad.Brand_Id = ac.Brand_Id
 AND ad.Product_Id = ae.Product_Id
 AND ad.Business_Id = af.Business_Id
 AND ad.Channel_Id = ag.Channel_Id
 AND ad.Sale_Center_Id= ai.Sale_Center_Id
 AND ad.Calendar_Date = aj.Calendar_Date
 AND ae.Product_Category_Id = aa.Package_Category_Id
 AND ai.Area_Id = ah.Area_Id
 AND ah.Division_Id = al.Division_Id
 AND al.Business_Unit_Id = ak.Business_Unit_Id
GROUP BY aa.Product_Category, ab.Brand_Category, af.Business, ag.Channel, ah.Area, al.Division,
ak.Business_Unit, aj.Year, aj.Quarter, aj.Month
PRIMARY INDEX (Product_Category, Brand_Category, Business ,Channel, Area, Division,
Business_Unit, Year ,Quarter, Month);

(Figure 5)

Check EIS dataload query against an AJI – After AJI has been created, check via
Teradata Explain command (Figure 6) if the AJI will be used by the EIS dataload
query for building the top-level in Essbase OLAP (ROLAP type) design (Figure 2.1).
To do this reset your Metaoutline to ROLAP type design and copy SQL from Edit SQL
dialog box (see Figure 4) and paste in Queryman or Winddi. As Figure 6 shows, the
AJI is called in the query plan.

Explain
SELECT aa.Business, ab.Channel, ad.Product_Category, af.Brand_Category, ah.Business_Unit,
al.Year, SUM(ac.Sales)
FROM Example_v.Business aa, Example_v.Channel ab, Example_v.FACT ac,
Example_v.Product_Category ad, Example_v.Product ae, Example_v.Brand_Category af,
Example_v.Brand ag, Example_v.Business_Unit ah, Example_v.Division ai, Example_v.Area aj,
Example_v.Sale_Center ak, Example_v.Time al
WHERE aa.Business_Id = ac.Business_Id
 AND ac.Channel_Id = ab.Channel_Id
 AND ac.Product_Id = ae.Product_Id
 AND ac.Brand_Id = ag.Brand_Id
 AND ae.Product_Category_Id = ad.Product_Category_Id
 AND ag.Brand_Category_Id = af.Brand_Category_Id
 AND ah.Business_Unit_id = ai.Business_Unit_Id
 AND ai.Division_Id = aj.Division_Id
 AND aj.Area_Id = ak.Area_Id
 AND ak.Sale_Center_Id = ac.Sale_Center_Id
 AND al.Calendar_Date = ac.Calendar_Date
GROUP BY aa.Business, ab.Channel, ad.Product_Category, af.Brand_Category, ah.Business_Unit,
al.Year
ORDER BY 1 ASC , 2 ASC , 3 ASC , 4 ASC , 5 ASC , 6 ASC

 1) First, we lock a distinct Example."pseudo table" for read on a RowHash
 to prevent global deadlock for AJI_EXAMPLE.
 2) Next, we lock Example_v.AJI_Example for read.
 3) We do an all-AMPs SUM step to aggregate from Example_v.AJI_EXAMPLE by way
 of an all-rows scan with no residual conditions, and the grouping
 identifier in field 1. Aggregate Intermediate Results are
 computed globally, then placed in Spool 3. The aggregate spool
 file will not be cached in memory. The size of Spool 3 is
 estimated with low confidence to be 2,912,040 rows. The estimated
 time for this step is 8 minutes and 38 seconds.
 4) We do an all-AMPs RETRIEVE step from Spool 3 (Last Use) by way of
 an all-rows scan into Spool 1 (group_amps), which is built locally
 on the AMPs. Then we do a SORT to order Spool 1 by the sort key
 in spool field1. The result spool file will not be cached in
 memory. The size of Spool 1 is estimated with low confidence to
 be 2,912,040 rows. The estimated time for this step is 15.92
 seconds.
 5) Finally, we send out an END TRANSACTION step to all AMPs involved
 in processing the request.
 -> The contents of Spool 1 are sent back to the user as the result of
 statement 1.

 (Figure 6)

Note: This dataload query contains a subset of columns that make up our AJI.
Hence, our optimizer will use it instead of going against our base tables.

Hence, as Figure 7 shows below, the EIS build for our ROLAP type design took 3mins
to build (i.e. query, data transfer for top level only). Where as, without the AJI the
build would have completed in 42mins.

(Figure 7)

Granted it took 2 hours to build the AJI, but as we will demonstrate in the next
section below “for better OLAP relational response” the same AJI would have been

required by a majority of the queries sent to the database by Essbase when
accessing relational/hybrid levels.

Better relational OLAP response using AJI
Now to illustrate second point above, we will show the AJI above being referenced by
an Essbase Hybrid query when navigating relational levels for analysis. As you can
see, below the query contains columns and joins that were referenced in our broad
AJI. Hence, there is no additional work required for relational OLAP queries from
Essbase to take advantage of our newly created AJI in our example. This will occur
automatically via the Teradata optimizer without any intervention from the end-user,
BI or DBA administrator. Result in relational query now takes 3 seconds instead of 95
seconds in our example.

SELECT DISTINCT

aa.Year ,
aa.Quarter ,
ab.Business_Type ,
ac.Channel_Type ,
ad.Product_Category ,
ae.Brand_Category,
af.Business_Unit ,
SUM (ag.sales)

FROM
time aa , business_type ab , channel_type ac , product_category ad ,
brand_category ae , org_business_units af , fact ag , product ah , brand ai ,
org_sales_center aj , org_areas ak , org_divisions al

WHERE
aa.calendar_date = ag.calendar_date AND
ab.business_type_id = ag.business_type_id AND
af.business_unit_id = al.business_unit_id AND
ag.channel_id = ac.channel_id AND
ag.product_id = ah.product_id AND
ag.brand_id = ai.brand_id AND
ah.product_category_id = ad.product_category_id AND
ai.brand_category_id = ae.brand_category_id AND
aj.org_id = ag.org_id AND
ak.area_id = aj.area_id AND
al.division_id = ak.division_id
AND (((aa.year = '2000'))) AND (((ab.business_type = ‘RETAILER')))
AND (((ac.channel_type = 'WHOLESALE'))) AND (((
ad.product_category = ‘TENTS'))) AND (((ae.brand_category = ‘APEX'))
) AND (((af.business_unit = ‘MIDWEST')))

GROUP BY
aa.Year , aa.Quarter, ab.Business_Type , ac.Channel_Type ,
ad.Product_Category , ae.Brand_Category , af.Business_Unit

ORDER BY

w/ AJI : 3 secs
w/o AJI : 95 secs

Summary
We hope this paper has shown the reader an approach on how to use Teradata
Database Aggregate Join Index feature to help ‘better’ your OLAP environment. In
our business case example we created 1 ‘broad’ AJI to address some of the
challenges in delivering your current and deeper OLAP analytics. Many combinations
and various AJI constructs can greatly improve your OLAP experience. This business
case is only one example. Understanding the cost (time to build and maintain AJI),
trade-offs (not quite ‘speed of thought’) and appropriate ‘cut-point’ (Essbase and
relational OLAP parts) will be ‘key’ to implementing and deploying the right OLAP
environment for your end-users. Some of the highlighted conclusions, benefits and
disadvantages are below:

Conclusions
• Aggregate Join indexes can greatly improve query performance – for any Essbase

cube part build and relational OLAP access

• Easy to define – fairly straight forward to create with the help of using EIS to

create the SQL statement

• Network traffic reduced – since, HOLAP/ROLAP keeps majority of data in the data

warehouse, less data is transferred

• Cube build times minimized – less data transfers means faster cube part build

time.

• Built in parallel – using Teradata for heavy lifting when building AJI

• Better response times with relational levels – using AJI for faster response

• Requires Teradata Database V2R5.1

Benefits

• Indexes created are can be relatively small structures - dependent upon number
of demographics rather than number of rows in Fact/base table(s)

• More in line with an Active data warehouse as opposed to MOLAP – access to

‘real-time’ data and more frequent Essbase cube build with a HOLAP solution

• AJIs can be shared by multiple cube definitions – transparent to any tool or user

• Can create broader and deeper cubes - more dimensions, more categories, more

member

• Maintenance on number of cubes reduced – no need to build other cubes to

address deeper or wider analytics

Disadvantages
With advantages come disadvantages when using the mentioned above solution with
AJI. Though, this paper did not get into the maintenance trade-offs and requirements
to ensure your relational queries reference the AJI. Readers should reference

Teradata Database documentation for requirements to ensure Teradata optimizer will
use the AJI you create. A few of these points are made below:

• Updates to base table are slower – AJI updates are tied to base table updates. In

MOLAP this is not the case

• Referential Integrity – RI is required to ensure optimizer will use AJI based on

incoming requests referencing join relationships between tables.

• Response times – Never claimed our solution will perform ‘exact’ to a MOLAP
solution. Especially when cube analysis goes deeper and wider at the same time.

• Today’s optimizer – need to be ‘SQL’ aware. RI is one requirement to ensure this.

• No desktop cube – no mobile or local cube option available.

Next Steps
To address lowest (relational) levels in your OLAP designs, consider the following:

Secondary Indexes
Secondary indexes provide faster set selection. Secondary indexes are frequently
selected by the Optimizer when a search condition cannot be satisfied with a primary
index retrieval. The Optimizer also selects secondary indexes for query plans when
they completely or partially cover a query.

Partitioned Primary Index
Are designed to optimize range queries while also providing efficient primary index
join strategies. Analyze your range query optimization needs carefully because there
are performance tradeoffs between specific range query enhancements and possible
decrements for primary index accesses and joins and aggregations on the primary
index that occur as a function of the number of active partitions.

	Introduction

