Compression Analysis Procedure
By Glen K. Blood

On 18 January 2004

Revised on 6 April 2004.

The procedures in this document were based on prior work by Colby Guilbeau and were shamelessly stolen from his work.

Teradata Multi-value Compression is a new feature of V2R5.0 which is an expansion of the older single value compression. This procedure is to enable you to perform an Analysis to determine what compression gains you can get and select values to compress.

Note: Primary Key Columns, and VARCHARs cannot be compressed.

Note: This compression requires knowledge of specific column values. Therefore, you must have data in a table to compress it.

Future Enhancements:

1. Building a method of comparing previous compression candidate values to the current table demographics to flag tables that should be recompressed.

2. Enhancing this procedure to make the analysis automatic. Kim Lee will be heading up this effort.

3. Add logic to calculate whether a VARCHAR column should be converted to a CHAR and compressed.

Tools for the Analysis:

Tables

DBA.T_CMPR_CAND (Compression Candidates). This holds the counts for each value in the columns compared. It is a historical record to enable enhancement 1 to occur. The use of this table eliminates a second pass on the source tables to build the compression value list.
Macros

DBA.M_GET_COL_COUT_CMD (GET COLUMN COUNT COMMANDS) builds the calls to the stored procedure SYSSTP.COL_COUT. Given a database, it will generate these commands for every table and column combination that can be compressed. Primary Key columns and VARCHARs are not included.
DBA.M_GET_CMPR_RSLT (GET COMPRESSION RESULTS) gets the cost savings for each compression number of values plateau (1,3,7,15,31,63, 127, and 255). These numbers are recommended by NCR since the compression implementation adds an addition byte once you exceed that level. You cannot compress more than 255 values. This builds a spreadsheet loadable list (one row per database, table, and column) that lists number of rows compressed (RANKxxx), amount of space saved (SAVINGSxxx), and the DELTA from the next lower value (DELTAxxx). This data is used to make compression decisions.

DBA.M_BLD_CMPR_LIST (BUILD COMPRESSION LIST) gives you the actual values to compress for a given database, table, column, and rank (or number of values to compress). You use this output to modify the original Table DDL to build the compressed version of the table.

Stored Procedures

SYSSTP.COL_COUT (COLUMN COUNTER) build the table DBA.T_CMPR_CAND. It selects the frequency distribution of each value for a given, database, table, and column.
Procedure:

Step 1. Set up the frequency counters.
Input: Which database do you want to compress.

Output: A list of the calls to SYSTP.COL_COUT

Execute DBA.M_GET_COL_COUT_CMD for your database to build the calls to collect column demographics for every table in the database.

Example:

Execute DBA.M_GET_COL_COUT_CMD(‘DB1’) gives you (list abbreviated for clarity):

CALL SYSSTP.COL_COUT

('DB1','TABLE1','COLUMN8');

CALL SYSSTP.COL_COUT

('DB1','TABLE1','COLUMN10');

CALL SYSSTP.COL_COUT

('DB1','TABLE1','COLUMN9');

CALL SYSSTP.COL_COUT

('DB1','TABLE2','COLUMN8');

CALL SYSSTP.COL_COUT

('DB1','TABLE2','COLUMN9');

CALL SYSSTP.COL_COUT

('DB1','TABLE3','COLUMN8');

CALL SYSSTP.COL_COUT

('DB1','TABLE3','COLUMN1');

CALL SYSSTP.COL_COUT

('DB1','TABLE3','COLUMN6');

CALL SYSSTP.COL_COUT

('DB1','TABLE3','COLUMN5');

CALL SYSSTP.COL_COUT

('DB1','TABLE3','COLUMN7');

CALL SYSSTP.COL_COUT

('DB1','TABLE3','COLUMN2');

CALL SYSSTP.COL_COUT

('DB1','TABLE3','COLUMN9');

You can either proceed to Step 2 or cull this list for tables/clumns that you want to analyze. This step takes seconds (16 seconds for our test run on TD12).

Step 2. Perform the demographics step (be prepared to wait a while)
Input: List of commands from step 1.

Output: Entries in table DBA.T_CMPR_CAND for the databases, tables, and columns requested.

Run the list of commands. This takes a while. For the entire XEWI410T database (on TD12) it took 27 minutes and 31 seconds.

Note: To analyze VARCHAR or Primary Key values, there is nothing stopping you from manually build these commands and running the analysis on the columns.
Step 3. Get the analysis results for the database.

Input: DBA.T_CMPR_CAND.

Output: A list of table columns with the space saving possibilities.

Execute M_GET_CMPR_RSLT for your database and collection date to get your input for analysis.
Example: Execute M_GET_CMPR_RSLT(‘DB1’,date). Note: If step 3 crosses over a date boundary, then you may have to run this command once for each possible date. Note I found it easier to run this step from SQL Assistant and move this data into a spreadsheet

Output (abbreviated for clarity):

	COMPILE_DT
	DATABASENAME
	TABLENAME
	COLUMNNAME
	ColumnLength
	NUM_ROWS
	MAXSIZE
	RANK001
	SAVINGS001
	RANK003
	SAVINGS003
	DELTA003

	1/8/2004
	DB1
	TABLE1
	COLUMN1
	4
	39
	156
	20
	78
	39
	146
	69

	1/8/2004
	DB1
	TABLE1
	COLUMN2
	4
	39
	156
	11
	43
	32
	120
	77

	1/8/2004
	DB1
	TABLE1
	COLUMN3
	4
	39
	156
	0
	0
	3
	11
	11

	1/8/2004
	DB1
	TABLE2
	COLUMN1
	4
	6
	24
	6
	23
	6
	23
	-1

	1/8/2004
	DB1
	TABLE2
	COLUMN2
	4
	6
	24
	0
	0
	0
	0
	0

	1/8/2004
	DB1
	TABLE3
	COLUMN1
	4
	6774
	27096
	1,423
	5,514
	2,077
	7,789
	2,275

	1/8/2004
	DB1
	TABLE3
	COLUMN2
	3
	6774
	20322
	263
	756
	711
	1,955
	1,199

	1/8/2004
	DB1
	TABLE3
	COLUMN3
	1
	6774
	6774
	3,532
	3,091
	6,774
	5,081
	1,990

	1/8/2004
	DB1
	TABLE3
	COLUMN4
	4
	6774
	27096
	5,630
	21,816
	6,774
	25,403
	3,586

	1/8/2004
	DB1
	TABLE3
	COLUMN5
	1
	6774
	6774
	3,782
	3,309
	6,774
	5,081
	1,771

	1/8/2004
	DB1
	TABLE3
	COLUMN6
	3
	6774
	20322
	659
	1,895
	1,625
	4,469
	2,574

	1/8/2004
	DB1
	TABLE3
	COLUMN7
	4
	6774
	27096
	0
	0
	846
	3,173
	3,173

This step took 3 seconds.

Step 4. Analysis using your MACH 1 eyeballs.

Input: Spreadsheet with values from Step 3.

Output: Tables, Columns, and the number of values to compress.

Note: There are two concerns that cannot be addressed in this analysis data.

1. The table header has a limit of 64K. If you exceed that limit then in Step xx. The table build will fail. If this happens, reevaluate your analysis, accepting less compression to fit within this limit.

2. If the data demographics are very volatile, then the compression may quickly become invalid and could hurt you. If you know that the column demographics change drastically over time, either skip this column or plan to reevaluate the compression on a regular basis.

For each compression level, the spreadsheet gives you how many rows are compressed (RANKxxx), the space savings for that level (compared to no compression) (SAVINGSxxx), and the difference in savings between this level and the previous level (DELTAxxx). This is the gain that you get by moving to this level of compression. Note; There is no DELTA001 since SAVINGS001 is the same value.

This obvious point to compress is the last positive DELTAxxx. If the DELTA < 0, then you are actually using more space at that level of compression than at the lower level. However, you might decide to stop at a low positive value to simplify the DDL and keep the header from exceeding its 64K limit.

Example:

Looking at a couple of columns in DB1.TABLE1 (COLUMN1 and COLUMN2)
COLUMN1 is 3 bytes long. There are 6774 rows in the table. Therefore an uncompressed column would take 20,322 bytes (MAXSIZE). Thus this column contributes 20,322 bytes to the total size of the table.
In order to exhibit the logic, I reformatted the spreadsheet data.

	Rank
	RANKxxx
	SAVINGSxxx
	DELTAxxx

	001
	263
	756
	

	003
	711
	1,955
	1,199

	007
	1,271
	3,336
	1,381

	015
	1,822
	4,555
	1,219

	031
	2,426
	5,762
	1,207

	063
	3,136
	7,056
	1,294

	127
	5,188
	8,604
	1,548

	255
	5,977
	9,906
	1,302

Now since DELTAxxx is always positive and the values are very similar, I would probably choose to compress 255 values. I would keep this one in mind in case you run out of header space.
COLUMN2 is 4 bytes long. There are 6774 rows in the table. Therefore an uncompressed column would take 27,096 bytes (MAXSIZE). Thus this column contributes 27,096 bytes to the total size of the table.

In order to exhibit the logic, I reformatted the spreadsheet data.

	Rank
	RANKxxx
	SAVINGSxxx
	DELTAxxx

	001
	5,630
	21,816
	

	003
	6,774
	25,043
	3,586

	007
	6,774
	24,556
	-847

	015
	6,774
	23,709
	-847

	031
	6,774
	22,862
	-847

	063
	6,774
	22,016
	-847

	127
	6,774
	21,169
	-847

	255
	6,774
	20,322
	-847

Obviously, you would never choose to compress more than three values, since by compressing 3 values, you get 100% compression. The bulk of your compression is gained by compressing the first value.
Less obvious, unless you compare all of the different columns.this is the best column to compress.

This step will probably take a few minutes per table.

Step 5. Getting the column values to compress.
Input: DBA.T_CMPR_CAND and the decisions made (database, table, column, and Compression Rank) from Step 4.

Output: Compression Values

Execute DBA.M_BLD_CMPR_LIST to get the list of columns and the values to compress in a format that will allow you to quickly modify the table DDL to build a compressed table. Vairables are (in order): Databasename, Tablename, Columnname, number of values to compress, and columnlength. Note: I had some problems with strings that ended in spaces. The columnlength was an attempt to solve this problem. It didn’t seem to work, so I have a little bit of cleanup to do with character fields.
Example

EXECUTE DBA.M_BLD_CMPR_LIST('DB1','TABLE3','COLUMN5',3,date, 9)

COLUMNNAME
<CASE expression>

COLUMN5

,1.

COLUMN5

,3.

This step took 1 second.
Character columns will have single quotes automatically added to the value, e.g., ‘ALPHA1’.

Step 6. Modifying the DDL

INPUT: The results of Step 5 (electronically) and the table schema. I used get_table_changes to pull out the DDL.

OUTPUT: Compressed DDL.

a. After the column definition add the text “COMPRESS(“

b. Copy the values from the second column in Step 5 after the open parenthesis. This gives you one value per line which is very easy to read and will not cause problems with bteq when performing a show table. Delete the first column.
c. Add a closed parenthesis “)” after the last value.

d. Build the new table and copy over your data and clean up.

Note: Obviously, if you are recompressing an compressed column, you can ignore a and c.

Note: If you use get_table_changes (see below) the rename of the uncompressed tabe and the data copy are taken care of. Then all you need to do is drop the renamed table when finished. Otherwise, you have to take care of everything.

Example:

Using get_table_changes.

Before Editing

RENAME TABLE DB1.TABLE1 AS DB1.TABLE1_GKB;

CREATE SET TABLE DB1.TABLE1 ,NO FALLBACK ,

 NO BEFORE JOURNAL,

 NO AFTER JOURNAL

 (

 COLUMN0 CHAR(4) CHARACTER SET LATIN NOT CASESPECIFIC NOT NULL,

 COLUMN1 CHAR(3) CHARACTER SET LATIN NOT CASESPECIFIC NOT NULL,

 COLUMN2 CHAR(3) CHARACTER SET LATIN NOT CASESPECIFIC NOT NULL,

 COLUMN3 VARCHAR(60) CHARACTER SET LATIN NOT CASESPECIFIC,

 COLUMN4 VARCHAR(25) CHARACTER SET LATIN NOT CASESPECIFIC,

 COLUMN5 DECIMAL(5,0) NOT NULL,

 COLUMN6 CHAR(1) CHARACTER SET LATIN NOT CASESPECIFIC NOT NULL,

 COLUMN7 CHAR(1) CHARACTER SET LATIN NOT CASESPECIFIC NOT NULL,

 COLUMN8 DATE FORMAT 'DD-MMM-YYYY' NOT NULL,

 COLUMN9 DATE FORMAT 'DD-MMM-YYYY')

UNIQUE PRIMARY INDEX XPKTABLE3 (COLUMN0)

INDEX XIF336TABLE3 (COLUMN1)

INDEX XIF337TABLE3 (COLUMN2)

INDEX XIF338TABLE3 (COLUMN5);

INSERT INTO DB1.TABLE3 SELECT * FROM DB1.TABLE3_GKB;

REVOKE ALL ON DB1.TABLE3 FROM O10782;

After Editing
RENAME TABLE DB1.TABLE3 AS DB1.TABLE3_GKB;

CREATE SET TABLE DB1.TABLE3 ,NO FALLBACK ,

 NO BEFORE JOURNAL,

 NO AFTER JOURNAL

 (

 COLUMN0 CHAR(4) CHARACTER SET LATIN NOT CASESPECIFIC NOT NULL,

 COLUMN1 CHAR(3) CHARACTER SET LATIN NOT CASESPECIFIC NOT NULL,

 COLUMN2 CHAR(3) CHARACTER SET LATIN NOT CASESPECIFIC NOT NULL,

 COLUMN3 VARCHAR(60) CHARACTER SET LATIN NOT CASESPECIFIC,

 COLUMN4 VARCHAR(25) CHARACTER SET LATIN NOT CASESPECIFIC,

 COLUMN5 DECIMAL(5,0) NOT NULL COMPRESS (

1.

,3.),

 COLUMN6 CHAR(1) CHARACTER SET LATIN NOT CASESPECIFIC NOT NULL,

 COLUMN7 CHAR(1) CHARACTER SET LATIN NOT CASESPECIFIC NOT NULL,

 COLUMN8 DATE FORMAT 'DD-MMM-YYYY' NOT NULL,

 COLUMN9 DATE FORMAT 'DD-MMM-YYYY')

UNIQUE PRIMARY INDEX XPKTABLE3 (COLUMN0)

INDEX XIF336TABLE3 (COLUMN1)

INDEX XIF337TABLE3 (COLUMN2)

INDEX XIF338TABLE3 (COLUMN5);

INSERT INTO DB1.TABLE1 SELECT * FROM DB1.TABLE1_GKB;

REVOKE ALL ON DB1.TABLE1 FROM O10782;

Now, run the above script and you end up with two tables DB1.TABLE1 is compressed and DB1.TABLE1_GKB is the original table.

If you are satisfied that the data in your compressed table is valid, drop DB1.TABLE1_GKB.

